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ABSTRACT 
 

Salinity of the soil and water is one of the principal environmental elements that might influence the soil proprieties, 

crop production, distribution plant pathogens and their associated diseases. In addition to preventing plant growth and 

development, salinity also has an impact on antagonistic and pathogenic of numerous fungi. In addition to its direct 

effects on crops, salinity has been a significant problem that causes additional damage by enhancing the predisposition 

of plants to biotic diseases. However, salinity may either a potential antifungal agent by reducing mycelia growth, 

sporulation and conidial germination or increases the virulence of diseases by promoting the production of enzymatic 

activities including cellulase, pectin lyase, and polygalacturonase by the microorganisms. The effect of this 

environmentally agent on the growth and reproductive parameters differs between species, either directly or indirectly. 

There are numerous fungal species that can grow in situations with high salt concentrations; the majority of them are 

halotolerant, but there are also some halophilic species that can only flourish in salty conditions. The aim of this 

review is to characterize behavior fungal regarding salinity, in order to develop an integrated pest management 

strategy that incorporates biological, chemical, and cultural control approaches for disease management, economical 

effective, and extremely appealing for better crop quality and environmental sustainability in these salinity-related 

conditions. 
 

Key words: Antimicrobial, Disease management, Osmotic stress, Plant diseases, Salt stress, Yield 

 

INTRODUCTION 

 

Saline and sodic soils are a global problem, occur in 

over 100 countries and under almost all climatic areas 

(Zewdu et al. 2017), but their distribution is relatively 

more extensive inthe areas that are dry and semi-dry. In 

terms of agricultural production, food security, and 

sustainability, soil salinization and sodification are the 

two main processes that degrade soil globally. 

Approximately, 833 million acres of agricultural land 

worldwide have been impacted by soil salinity (Zaman et 

al., 2018). 33 percent of irrigated lands and 20% of 

agricultural lands worldwide are affected by salt (Machado 

and Serralheiro, 2017). Parent soil constitution or poor 

agricultural methods can both contribute to soil salinity, 

which is referred when referring to primary and secondary 

soil salinity, respectively (Zaman et al. 2018). Salt-affected 

the soil functions, including, physical, chemical, and 

biological properties. 

Salinity, which is an inhibiting factor for the growth 

and development of plants, may cause, in certain horizons 

of the soil, due to the high concentration associated with 

the precipitation of soluble salts, a great change of fungal 

diversity. A variety of morphological, physiological, 

biochemical, and molecular changes brought on by poor 

irrigation water that produces very saline soil, have a 

negative impact on fungal growth and cause a change in 

their lifestyle. The major impacts of excessive salinity are 

ion disequilibrium, which result in secondary effects such 

hyperosmotic stress (Zhu, 2001). High salinity affects 

plants in several ways: stomatal closure, cell division and 

cell growth were all prevented, alteration of metabolic
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processes, membrane disorganization, resulting in 

decreased plant growth, crop yields and low economic 

returns (Munns, 2005; Parida and Das, 2005). 

Salinity of the soil and water not only prevents the 

development and growth of plants, but also has an impact 

on associative, competitive, mutualistic, or antagonistic 

and pathogenic of microbial. Numerous microorganisms 

harm plants in a variety of ways, which ultimately yields a 

small amount and, consequently, poor economic worth. 

Furthermore, a few environmental elements, including 

salinity, temperature, humidity, drought, and nutrients, 

which further to exacerbate diseases caused by fungi. 

Previous studies showed that salt in the soil and water 

affects plant growth and makes plants more susceptible to 

certain phytopathogens (Egamberdieva and Jabborova, 

2013). 

Although only a few numbers of fungi are thought to 

be obligate halophiles, some others may grow more 

effectively in the presence of salt, giving them an 

advantage over species that are less salt-tolerant (Biango-

Daniels and Hodge 2018). For exemple, Aspergillus, 

Talaromyces, Penicillium, and Trichoderma, for instance, 

are terrestrial fungus that have adapted to marine settings 

(Damare et al., 2006). The effect of salinity against 

microorganisms was reported earlier (Boumaaza et al., 

2015; Regragui and Lahlou, 2005; Swiecki and 

MacDonald, 1991). 

 

Pathogens halophilesto salts 

Halophiles are generally understood to be 

microorganisms that can only grow in salty conditions 

(Larsen, 1986). The classification of halophilic microbes 

includes slight (growth optimal at 3%), moderate (3-15 

%), and extreme (25 %, but unable to thrive at less than 

12% NaCl) (Kushiner, 1978). Studies of fungal 

population’s halophiles habitats on different continents 

have shown the frequent and prolific prevalence of several 

fungi (Gunde-Cimerman et al., 2000). There have been 

several reports of fungi from halophiles environments, 

including Aspergillus, Alternaria, Aureobasidium, 

Cladosporium, Penicillium, and Hortaea (Jaouani et al. 

2014, Mokhtarnejad et al. 2016). 

The so-called black yeasts are the most prevalent 

fungus species in the salterns' hypersaline habitats 

(Gunde-Cimerman et al., 2004). The exceptional abilities 

of these shady funguses with melanized cell walls allow 

them to withstand stressful situations, and many of them 

are polyextremotolerant. G. marismortui, which is 

characterized as a novel species, as well as P. westlingii 

and U. chlamydosporum were isolated from samples of 

Dead Sea. (Deuteromycota). On medium with up to 50% 

Dead Sea water, G. marismortui and U. chlamydosporum 

thrived. It was discovered that obligatehalophile G. 

marismortui thrives best at 0.5-2 M NaCl. Isolated 

cultures grew on agar used with 50% Dead Sea water 

rather than on agar media without salt. This implies that 

they might have developed a tolerance for the highly 

harsh hypersaline Dead Sea environment (Buchalo et al., 

1998). 

These fungi can maintain a stable osmotic pressure in 

their surroundings by retaining less intercellular salt and 

collecting compatible solutes like glycerol (Gostinčar et 

al. 2011). Stress is detected by halotolerant and halophilic 

organisms via the pathway of high osmolarity glycerol 

signaling (Gostinčar et al. 2011), for the maintenance of 

cellular osmotic equilibrium (Hohmann 2009). 

Additionally, fungi may produce extracellular 

polysaccharides to coat their cells or thicken their cell 

walls as passive stress tolerance mechanisms (Kuncic et 

al. 2010). Less consideration has been given to fungus 

reactions to high levels of other chaotropic and 

kosmotropic salts. These salts can only decrease the 

amount of water that is biologically available, produce 

toxicity when particular cations enter cells, and change 

how cellular macromolecules interact. The kosmotropic 

salts react in the opposite direction to the chaotropic salts, 

which weaken electrostatic connections and destabilize 

macromolecules (Oren 2013). Therefore, the presence of 

kosmotropic ions can somewhat offset the chaotropic 

effects of magnesium and calcium (Williams and 

Hallsworth 2009). An illustration, only a few number of 

halophilic Archaea spp. can survive in conditions with 

high NaCl (Oren et al. 1995). 

 

Pathogens tolerant to salts 

Microorganisms that can tolerate salt can live in 

saline conditions but survive without sodium chloride. 

Microorganisms that can flourish in saline settings 

exceeding 15% NaCl are referred described as being 

extremely halotolerant (Kushiner, 1978). 

Many pathogens are tolerant to salts in culture, 

including certain oomycetes that resemble fungi. Research 

on the impact of salinity on fungus have shown that 

varying levels of salinity tolerance exist among P. 

ultimum (Hassan and Fadl-Allah, 1993), F. oxysporum 

(Ragazzi and Vecchio 1992), P. aphanidermatum 

(Rasmussen and Stanghellini, 1988), P. parasitica (Blaker 

and MacDonald, 1985), Penicillium (Tresner and Hayes, 

1971), P. arrhenomanes var. canadensis (Machacek, 

1936). Boumaaza et al., (2015), also reported that six 

isolates of Botrytis cinerea obtained from various tomato 

genotypes, and all of the isolates examined were 

stimulated in 50 to 150 ppm of NaCl. These reports are in 

agreement with findings of Laxmi et al. (2013) showed 

that five isolates of Trichoderma harzianum could 

proliferate and sporulate in media with upwards to 

240mM NaCl were chosen to be salinity tolerant under 

laboratory conditions. Previous research revealed that 

Phytophthora isolates from salty soils were much more 

resistant to salt than isolates from non-salty soils 

(Duniway, 1979). Different tolerances to salt stress, as 

described for Phytophthora isolates, may be the cause of 

different responses to salinity (Blaker and MacDonald, 

1985). According to Gour et al. (1990), Fusarium attack 

leads to plant wilting and yellowing under high salt levels, 

while F. oxysporum, the primary cause of chickpea wilt, 

tolerates high salt concentrations. It was also looked into 

if plants could grow in salty environments. Under saline 

conditions, Fusarium sp. F092 growth accelerated by 

about 20%. F092 was able to survive and develop because 

it responded to salt stress by expressing a number of 

different genes and biochemical pathways (Hidayat et al., 

2012). In salter brines, Aspergillus and Penicillium 

species are frequently seen. For example, the Cabo Rojo 

saltern's salt pond water was used to isolate nine 

halotolerant Aspergillus and five halotolerant Penicillium 
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species (Cantrell et al., 2006). Additionally, 

Cladosporium sp. was identified in media containing 50% 

sugar or a salt-and-sugar mixture, which indicates low 

water activity conditions (Gunde-Cimerman et al., 2000). 

Fungi must resist osmotic and salt stress in reaction to 

high salinity in order to live in salt stress (Gunde-

Cimerman et al., 2018).  

In order to keep intracellular sodium ion under toxic 

levels when growing in saltwater medium, fungi 

accumulate compatible solutes in the cytosol. (Hohmann, 

2002). According to Zajc et al. (2014), glycerol is the 

most significant compatible solute, and glycerol-3-

phosphate dehydrogenase regulates glycerol production 

(Lenassi et al., 2011). 

Second, fungus tolerant to salts is ability to respond 

to salinity stress is correlated with cell wall structure and 

melanization. In hypersaline environments, melanization 

of cell walls reduces their glycerol permeability and aids 

in the intracellular retention of glycerol (Kogej et al., 2007). 

Thirdly, a salt adaptation strategy involves 

maintaining ion homeostasis utilizing a variety of metal 

cation transporters. Debaryomyces hansenii is the 

halotolerant fungal species that has been examined the 

most in terms of ion homeostasis. According to early 

studies on marine yeast, K+/Na+ fluxes play a role in this 

process and D. hansenii is the species that is least affected 

by high sodium chloride levels (Norkrans and Kylin 

1969). Later, numerous investigations revealed that D. 

hansenii is not poisonous to Na+ and that when NaCl is 

present, compared to S. cerevisiae, D. hansenii develops 

more positively and collects more Na+ (González-

Hernández et al. 2004). 

 

NaCl's effect on mycelial development 

The mycelial growth of the fungus was greatly 

accelerated by a number of salts, including potassium 

(such as CH3CO2K, KCl, KNO3 and K2HPO4), NaCl, 

Na2SO4, and Na3PO4 (Türkkan 2013). Moreover, many 

studies demonstrated that sodium chloride enhanced the 

mycelial growth of numerous funguses. In a related 

context, Boumaaza et al. (2015); Regragui and Lahlou 

(2005) and Sanogo (2004) illustrated that using sodium 

chloride, increase mycelium growth with various NaCl 

concentrations respectively on V. albo-atrum, P.capsici 

and B. cinerea. Notably, Boumaaza et al. (2015) found 

that this growth stimulation only occurred at values lower 

than 0.3 g/L. A negative connection between mycelium 

production and NaCl content was seen above this cutoff 

point. With increase in salinity level, Phytophthora 

capsici's mycelial dry weight increased by 8 to 16%, and 

the radial growth of the mycelium was accelerated by 5 to 

30 % (Sanogo, 2004). Matsuda et al. (2006) reported that 

P. tinctorius hyphal growth at 25 mM NaCl was 

noticeably greater than that at the other NaCl levels (50, 

200, 500, and 1000mM) and EC50 values were confirmed 

at concentrations of 50 to 200 mM. Recently, Wang et al. 

(2020) found that media containing different 

concentrations of NaCl (0-80 g/L) increase mycelium 

growth of A. ochraceus and P. nordicum, and the colony's 

diameter was maximum at a salt level of 40 

g/L.According to research by Tarroum et al., (2021) the 

isolates, C. globosum, A. tenuissima, C. foveolata, 

P.melinii, N. chinensisand B. spectabilis can all grow in 1 

M NaCl. Intriguingly, isolates Byssochlamys spectabilis 

and Nigrospora chinensis were more tolerant to NaCl; in 

addition, under 100 mm and 200 mm NaCl, the two 

bacteria immediately covered the whole surface of the 

agar compared to the controls. Under in vitro conditions, 

Trichoderma asperellum was very salt tolerant and shown 

robust growth up to 1400mM NaCl concentration (Singh 

et al., 2019).The mycelial development and sporulation of 

various Fusarium genuses, as well as F. oxysporum, are 

motivated under salinity conditions (El-Abyad et al. 

1988). 

Fungi exposed to salt stress would trigger a series of 

responses with essential roles in stress adaptation, such as 

production of energy, metabolism of cell walls, ion 

movement, the synthesis and degradation of lipids in cells, 

cytoskeleton behavior and signage (Nivedita and 

Ramchiary 2021). The majority of funguses require 

passive strategies to survive at high salt concentrations, 

including the development of extracellular 

polysaccharides to coat the cells or thicken the cell wall 

and the formation of cell clumps (Kralj et al., 2010).On 

the other hand, several recent studies that discuss the 

impact of salt and heavy metal stress on the rising indole 

acetic acid synthesis by fungus in vitro (Mehmood et al., 

2019). For example, the glycerol is the most prevalent 

osmolyte in H. werneckii and W. ichthyophaga, however 

smaller concentrations of erythritol, arabitol, and mannitol 

can also be observed (Kogej et al., 2007; Zajc et al., 

2014). It is a signature stress osmolyte, indicating that in 

A. sydowii glycerol was only accumulated at 2 M NaCl. In 

A. sydowii, the fungal cell wall structure is extensively 

altered under salinity conditions. When the fungus 

developed in 2 M NaCl, the transcript levels of the 

enzymes endochitinase (chi) and chitotriosidase (chit) 

increased, which may have caused a general decline in the 

amount of chitin and chitosan in the cell wall (Pérez-

Llano et al., 2020). 

Significant differences existed in the expression of 

many genes related to stability and change of the cell wall, 

within a salt stress. A fungus's cell wall goes through 

substantial modification to avoiding salt stress-related cell 

damage, as evidenced by the turning on of genes linked to 

chitinase, beta-glucosidase, glucan endo-1,3-alpha-

glucosidase and Rho-type GTPase (King et al., 2017). A 

high salinity may cause an elvation in ROS and, as a 

result, the body's response to oxygen-related stress 

(Tanaka et al., 2006). 

It has been previously reported that the fungi 

exposure to high salinity led to significant decreases in 

mycelial development, sporulation and germination rate. 

Early studies indicated that salinity stress caused the 

depression in mycelia production of M. xanthopus 

between 35 and 40 gL-1 NaCl (Castillo and Demoulin, 

1997). Aksu and Balibek (2010) reported that Rhizopus 

arrhizus' growth rates only decreased by 20–25 percent 

after being exposed to 50 gL-1 NaCl (conductivity of 98.9 

mS/cm). Also, by lowering the radial daily growth and 

mycelium dry weight, Jacques et al. (2019) shown that 

NaCl has a detrimental impact on growth metrics and 

number of infectious spores while resulting in an 

increased in germination rate of F. oxysporum f. sp. 

elaeidis. Mycelia may directly respond to the negative 

consequences of the increased salinity by experiencing 
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osmotic stress or becoming toxic substances that interfere 

with membrane stability and/or enzyme activity (Adler, 

2020). 

Salinity causes cells to experience both ionic and 

osmotic stress, which increases intracellular Na+ buildup 

and can harm membrane systems and cytosolic proteins. 

The fungus cells' exposure to saline stress includes 

exposure to both osmotic stress and specific cation 

toxicity (Na+). These ions can block particular metabolic 

pathways, which makes them poisonous to cells (Posas et 

al., 2000). According to reports, ROS damage to proteins, 

lipids, and DNA (Farrugia et al., 2012) results in 

apoptotic cell death (Carmona-Gutierrez et al., 2010), or 

aging (Fröhlich and Madeo 2001). 

 

Effect of NaCl on sporulation  

It's possible that spore generation was crucial for 

fungus survival. The spore develops in reaction to 

unfavorable conditions. The spore is a multicoccal 

structure that is dehydrated and includes a full copy of the 

chromosome, the smallest amounts of necessary proteins 

and ribosomes, and a significant amount of calcium that is 

bonded to dipicolinic acid. The spore structure protects 

genomic DNA to many extreme conditions including 

salinity, alcalinity, heat, desiccation, UV and γ-radiation, 

and a variety of products chemicals (Eichenberger and 

Driks, 2014). 

Due to its strong salt-resistant characteristics, spore 

production may be a useful escape mechanism from 

unfavorable high salinity conditions. However, contrary to 

expectations, high salinity effectively stimulates 

sporulation. Sporulation that is continuously exposed to 

salt-rich environments is stimulated at the earliest possible 

stage. In fact, Boumaaza et al. (2015); Daami-Remadi et 

al. (2009) and Regragui and Lahlou (2005), all noted that 

B. cinerea, V.dahliae, and V. albo-atrum sporulation rates 

were stimulated when the concentration of NaCl was 

increased. Under situations of salt stress, various 

Fusarium species, notably F. oxysporum f.sp. ciceri (foc), 

motivate their mycelial growth and sporulation under salt 

stress conditions (El-Abyad et al. 1988; Gour et al. 1990). 

The highest production of A. niger and P. lilacinum 

conidia, collected from the soil, was seen in both species 

in the nutritional medium including 1% sodium chloride. 

Conidia of P. lilacinum were not produced on nutrient 

medium contening 5% sodium chloride; however 

Aspergillus niger grown in the same conditions at 5% 

sodium chloride did produce conidia (Mert and Dizbay, 

1977). Torpedospora radiata, Lulworthia floridana, and 

Halosphaeriopsis mediosetigera all sporulated in artificial 

media made composed of saltwater dilutions ranging from 

0 to 100% (Jones et al. 1971). According to Branco et al. 

(2015), the salinity-adapted Suillus brevipes fungus has 

distinct genomic areas that contained the gene for a 

membrane Na+/H+ antiporter, a gene linked to tolerance 

for salinity stress. 

Although the effect of sporulation in the presence of 

salt was somewhat variable. Previous studies using 

increasing NaCl concentrations to assess the rate of 

sporulation. Building on previous observations,salinity 

has a major impact on sporulation of fungus such as S. 

fimicola, C. globosum, G. retispora, N. crassa, and S. 

fimicola; a salinity of 60% didn't result in any ascospore 

production (Jones et al., 1971). Under saline conditions, 

production of Phytophthora capsici sporangia and 

zoospore was decreased by approximately 3 to 85 and 1 to 

93%, respectively (Sanogo, 2004). In Pochonia 

chlamydosporia, the colony area was less inhibited 

(6.55%) and sporulation was less inhibited (21.57%) at a 

concentration of 40 mmol.L-1 of NaCl than at 160 

mmol.L-1, where values of 51.3% and 85.1%, 

respectively, were recorded (Ceiro et al., 2014). 

Some microorganisms are unable to survive due to 

osmotic stress brought on by high salinity. High salinity 

environments also have a low water index, are more 

alkaline, and provide poor nutrition for the 

microorganisms that live there (Corral et al., 2020). 

Microorganisms have a variety of adaption mechanisms in 

order to survive in such hostile environments. One of the 

main methods used by microorganisms to attain osmotic 

balance is the accumulation of massive quantities of ions 

within the cell (Kanekar et al., 2012). The increased salt 

level inside the cell is primarily the result of K+ ions, as 

organisms exclude Na+ ions because of their toxicity a 

number cellular constituents (Gunde-Cimerman et al., 

2018).This strategy requires intracellular proteins and 

substances with acidic residues, which are found on the 

protein's external. Water molecules are coordinated by 

them to produce a wall that protects the protein from 

dehydration and precipitation of ions (Ma et al., 2010). 

Microorganisms require organic molecules to keep 

osmolality inside of cells. Polyols, sugars, glycérol, 

ectone, and diméthylsulfoniopropionate are among the 

compatible solutions that do not obstruct with the function 

of enzymes (Ma et al., 2010). The three chemical groups 

of organic solutes: anionic solutes, zwitterionic solutes 

and uncharged solutes (Kanekar et al., 2012). Salt stress 

affects the lipid content that includes the quantity of 

sterols, the fatty acyl chain type, and the makeup of head 

groups in polar phospholipids. Fungi can tolerate in 

extremely high salinities by cell wall melaninization to 

prevent water loss, intracellular compatibility solute 

leaking and to maintain high membrane fluidity 

(Plemenitaš et al., 2008). 

However, in salinity-sensitive fungi, the extracellular 

and intracellular compartments' membrane potentials are 

different from one another, in that enhanced by the 

increased extracellular quantities of ions (such Na+ and Cl-

). As a result of the membranes being excited, the 

potassium (K+) channels open, which allows for the entry 

of Na+ and Cl- ions as well as the passage of K+ out of the 

cell. In this manner, too many Na+ ions could compete 

with K+ ions for the same receptors in a variety of 

biological processes. Additionally, Cl- ions have negative 

consequences that might manifest at lower concentrations 

than Na ions. The ability of Na to establish more durable 

connections with the cell membranes contain lipids while 

Cl- is free in solution and has the capacity to cause 

toxicity at a greater number of distinct places inside the 

cells may be the cause of this higher toxicity of Cl- 

(Knecht and Klasczyk, 2013). 

 

Effect of NaCl on spore germination  

Different fungi species show reduction of 

germination under saline conditions. Boumaaza et al. 

(2015), Sanogo (2004) and Ragazzi and Vecchio 
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(1992),they found that the germination rates of Botrytis 

cinerea, Phytophthora capsici and Fusarium oxysporum f. 

sp. vasinfectum were all negatively impacted by NaCl. In 

the presence of additional NaCl, 32.6 % of the spores 

germinated of Rhizopogon roseolus at 50 mM, 7.4 % at 

150 mM, and 0.5 % at 300 mM. As the NaCl 

concentration increased, the total germination rate 

considerably decreased (Nakanoa et al., 2022). R. 

undulata isolates had an ascospore germination rate of 

83.3 % overall at 50 and 100 mM NaCl concentrations (no 

germinations were seen at 300 mM) (Lee et al., 2015). 

According to several studies, fungus spores regularly 

hydrate and the germlings can grow at a concentration of 

around 50 mM NaCl, but the germination process is 

finally inhibited above a concentration of 100 mM NaCl 

(Campagnac and Khasa, 2014). A. wentii, P. janthinellum, 

and Z. moelleri exhibited limited germination at low 

salinities; however, the conidia of G. fimbriatum, P. 

puntonii, and T. lignorum could only germinate in 

distilled water (Borut and Johnson, 1962). At doses of 150 

mM and above, R. solani exhibits aerial hyphal 

development, less thick mycelia, and a decrease in spore 

germination percentage (Dylan, 2018). A positive effect 

on fungal growth and conidia germination under 50 mM 

of NaCl was suggested by Boumaaza et al. (2015), Turco 

et al. (2002) and Dikilitas (2003). Ragazzi and Vecchio 

(1992) found that substrates containing 10 ds/m sodium 

chloride enhanced the germ tube length and germination 

of F. oxysporum f. sp. vasinfectum chlamydospore. 

In principle, the germination process may be inhibited 

by NaCl at a variety of stages, including binding to 

receptors in the spore's membrane, signal transduction, the 

spore core's ion efflux followed by its DPA(dipicolinic 

acid) efflux and cortex hydration (Cortezzo et al., 2004). 

According to earlier reports, reduced mycelia, conidia 

germination, and sporulation are characteristics of heavily 

salinized fungi due to the low osmotic potential, toxicity 

and reduced ion availability (Egamberdieva, 2011). Low 

osmotic potential causes fungi to undergo morphological 

changes, hyphal growth, and a general decline in spore 

germination (Juniper and Abbott, 2006). The mechanism 

of spore germination is started by water entering the 

spore, which is followed by the hydration of the spore's 

organelles and macromolecules. After that, the enzyme 

activates to initiate the cellular metabolic cycle. This 

mechanism is disrupted under saline conditions. 

 

Salinity's effects on pathogenecity 

Salinity of the soil and water is one of the principal 

environmental elements that might influence the 

existence, growth, and frequency of phytopathogenic 

fungus. The growth and development of fungus in salt not 

just makes them more virulent, but also has the potential 

to reduce their pathogenicity. It's crucial to remember that 

under saline or typical conditions, naturally resistant to 

disease cultivars may also become susceptible to them 

(Mou, 2011). If pathogens demonstrate more tolerant to 

the harmful effects of salinity than those of their hosts, 

then added stress on host plants is unavoidable. 

 

Salinity’s positive effects on pathogenicity 

Salinity undoubtedly has a negative impact on plant 

growth, but it can also have a good impact on fungal 

growth, including an increase in pathogenic activity. 

According to several researches on the relationships 

between microorganisms and salinity showed that 

increased in disease are associated with higher salinities. 

As is the situation with, Phytophthora capsici (Sanogo, 

2004), P. aphanidermum (Rasmussen and Stanghellini, 

1988), Fusarium crown rot (Woltz et al., 1992; Triky-

Dotan et al., 2005) and P. parasitica (Swieckil 

andMacDonald, 1991). MacDonald (1984) reported that 

Chrysanthemum root rot was shown to be more common 

with exposures to salinity stress. He speculated that this 

may have been caused by the roots' vulnerability to 

zoospore infection as a result of the deplasmolytic shock. 

Various soilborne infections, particularly pathogenic 

strains of Fusarium, have been linked to amplified disease 

incidence after irrigation at extremely salty water (Sivan 

et al., 1993). Although anecdotal information from earlier 

investigations in Oman suggesting that farms with higher 

salinities experienced significantly greater rates of 

pythium damping-off disease (Al-Kiyumi, 2006). Beech 

(1949) attributed increased damping-off of tomato 

seedlings treated with fertilizer salts was caused by 

Phytophthora species growing more quickly than their 

hosts when both were subjected to osmotic stress. 

According to Goudarzi et al. (2011), increasing soil salt 

levels up to 1400 mg of NaC kg-1 significantly increased 

Macrophomina phaseolina shoot and root colonization. 

As a result, increasing NaCl levels were associated with 

more diseased crown and root. Similar results were found 

for tomato and cucumber, where increased soil salinity 

enhanced Fusarium solani root disease (Egamberdieva et 

al., 2011). When Verticillium albo-atrum is grown on an 

80 mM NaCl-enriched carboxymethylcellulose (CMC) 

medium, its carboxymethylcellulase activity increases, 

increasing its pathogenicity (Regragui et al. 2003). In 

cucumber seedlings infected with Pythium 

aphanidermatum, mortality increased considerably with 

saline irrigation from 0.01 to 5 dS/m (Al-Sadia et al., 

2010). 

High salinity may alter a plant's morphology, 

anatomy, metabolism, and biochemistry, affecting factors 

like water relations, stomata size and number, stem, leaf, 

and root structure, photosynthesis, protein synthesis, lipid 

metabolism, cuticle thickness, ion homeostasis and 

membrane function, synthesis of nucleic acids, enzymes, 

and osmolytes (Bernstein and Kafkafi, 2002; Parida and 

Das 2005). The above alterations caused by high salinity 

to the plant may be linked to increased susceptibility to 

the disease. According to Bernstein and Kafkafi (2002), 

salinity causes in osmotic stress on the plant, decreased 

water potential, all of which could worsen the wilt. 

Salinity may result in a reduction in other nutritional 

ions, such as K+, which is usually linked to disease 

resistance. Because potassium ion is necessary for cellular 

function, Na+ competes with K+ for binding sites, which 

results in metabolic toxicity. Na+ and Ca2+ ions were 

discovered to compete with one another in the root media 

(Flowers, 2004). In these conditions, the cell wall 

membrane weakens and lyses, allowing assimilates (such 

as glucose and amino acids) to continuously exit the cell 

and perhaps promote fungal development. 

The potential exists for fungi to produce more 

enzymes at low NaCl concentrations. For example, 
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Sclerotium rolfsii produced more enzymes, including 

xylanase and galactanase, at higher salt concentrations 

(El-Abyad et al., 1992). Similar to this, Turco et al. 

(2002) found that conidial formation and the generation of 

cell wall enzymes were both facilitated less than 50 mM 

of NaCl, which in turn improved the pathogenicity of 

fungal infections. In addition, even if crop plants develop 

high levels of resistance, salt's long-lasting effects and 

high concentrations have the power to weaken resistance 

and promote pathogenic attack (Fu et al., 2013). 

 

Salinity’s negative effects on pathogenicity 

Pathogens not only become more virulent in saline 

environments, but also have the potential to non-virulent. 

Increased salt levels reduce the growth of fungi's mycelia 

and sporulation due to negative osmotic potential, toxic 

and nutritional effects, as well as other factors 

(Egamberdieva, 2012). According to Amir et al. (1996), 

salt inhibited soil mycelial development and conidia 

germination, making it suppressive to Fusarium 

oxysporum, the fungus that causes vascular wilt disease. 

Similar conclusions were reached by Goudarzi and 

Pakniyat (2008) and El-Mougy and Abdel-Kader (2009) 

on the Fusarium culmorum, Macrophomina phaseolina 

and Alternaria solani. According to Elmer (1992), the 

application of NaCl allowed for the controlled spread and 

growth of Fusarium crown and root rot brought on by F. 

oxysporum and F. proliferatum. The anammox process 

can be severely inhibited by elevated salinity levels. High 

salinity causes an increase in osmotic pressure, which 

causes microbial cells to lose water. This dehydration and 

plasmolysis eventually cause the cells to die (He et al., 

2017). In addition to these problems, the growth of 

mycorrhiza and symbiotic microorganisms may be 

significantly impacted relating to colonization potential 

and effectiveness (Asghari et al., 2008). 

 

Conclusion 

Soil and water salinity constitutes one of the most 

crucial environmental factors and impairs the plant growth 

through ionic and osmotic stress, nutritional deficiencies, 

and water deficiency. In addition to preventing plant 

growth and development, salinity also has an impact on 

antagonistic and pathogenic of numerous fungi. Sodium 

chloride may either a possible antifungal agent by 

decreases mycelia growth, sporulation, and conidial 

germination or increases the virulence of diseases. It has 

been recommended that the concentration of sodium 

chloride applied as an antifungal measure not goes above 

a particular point because the disease may eventually 

adapt to the salinity of the environment. 
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