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ABSTRACT  Article History 

Genomic selection has revolutionized plant breeding by enabling the efficient and accurate 
selection of elite genotypes. Traditional approaches require resource-intensive phenotyping at 
all stages of artificial selection. However, genomic selection reduces this burden by leveraging 
genotyping data and machine learning techniques to predict agronomically relevant phenotypic 
traits. In this paper, we present a two-level prediction system that incorporates both 
phylogenetic analysis and machine learning models to predict the height of Oryza Sativa L. 
(Rice) plants based on their gene sequences. The only input for our model is a genomic 
sequence, whose length does not have to be equal to 24 (number of SNPs considered for our 
model). At the first level, we employ phylogenetic analysis to classify the plants into 
subpopulations, capturing the inherent genetic diversity within the dataset. This approach 
addresses the limitations of existing research, as it incorporates population structure information 
from gene sequences that is often overlooked in machine learning-based approaches. 
Subsequently, at the second level, we leverage the population structure information and 
genomic data to train a machine learning model for accurately predicting plant height. We 
compare and evaluate various methods employed at both levels to identify the most effective 
approach. Hence our approach of predicting Phenotype with reference to genotype is accurate 
compared with other existing systems. Two level classification has done well in identifying 
phenotype and performed well in predicting subpopulation. 
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INTRODUCTION 
 

Predicting Phenotype 
The ability to predict an organism's phenotype from its 

genotype and environment is a central problem in genetics 
with significant societal implications (Zafar et al., 2021; 
Zafar et al., 2022a; Zafar et al., 2022b). This problem 
extends to various domains, including medicine, where 
understanding the relationship between genotype, 
environment, and disease phenotype is crucial 
(Schizophrenia Working Group of the Psychiatric 
Genomics Consortium 2014). In agriculture, predicting 
crop phenotypes such as yield and drought resistance is 
essential for sustaining the world's growing population 
(Zafar et al., 2022c; Desta & Ortiz 2014). 

Advances in DNA sequencing technology have 
revolutionized our ability to characterize an organism's 
genotype by employing thousands of genetic markers 
(genome-wide association studies, GWAS) (Yang et al., 
2010; Desta & Ortiz, 2014). However, the traditional focus 
of GWAS on identifying genetic markers associated with 
phenotypes has limitations in capturing the complex 
nature of phenotypic traits and evaluating their predictive 
utility (Lynch & Walsh, 1998). To overcome these 
challenges, a more direct and operational approach to 
phenotype prediction has emerged, aiming to learn 
predictive functions that leverage an organism's genotype 

and environment to predict its phenotype (Haroon et al., 
2022a). 

In the field of plant breeding, genetic markers, 
particularly single nucleotide polymorphisms (SNPs), have 
revolutionized the process by enabling marker-assisted 
selection (MAS) (Vignal et al., 2002; Ali et al., 2023). MAS 
relies on the association of genetic markers with target 
genes to rapidly select genotypes with desired phenotypic 
traits. However, MAS is limited to major-effect loci and does 
not account for the complexity of agronomically relevant 
traits controlled by minor-effect loci (Desta & Ortiz, 2014). 
To address this limitation, genomic selection (GS) has 
emerged as an advanced breeding approach that utilizes 
genome-wide genetic markers to capture all quantitative 
trait loci (QTL) for a trait (Jannink et al., 2010; Razzaq et al., 
2022). GS overcomes the need for QTL mapping and 
enables the consideration of minor-effect QTL, increasing 
its prediction power compared to MAS (Desta & Ortiz, 
2014). The rise of GS has transformed plant breeding by 
integrating phenotypic and genotypic information through 
statistical machine learning models (Jannink et al., 2010). 
This predictive methodology, leveraging reference 
information containing both phenotypic and genotypic data, 
has demonstrated its potential in accelerating genetic gain 
in crops such as maize, wheat, and chickpea (Desta & Ortiz, 
2014; Haroon et al., 2022b; Haroon et al., 2023). The cost 
reduction   in  genotyping  technologies,   coupled   with  the 
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proven utility of GS, has expanded its application beyond 
annual crops to long-lived species (Desta & Ortiz, 2014). 
Overall, the integration of genomic data, machine learning 
techniques, and predictive models in GS holds promise for 
advancing our understanding of genotype-phenotype 
relationships, enabling more efficient plant breeding 
strategies, and addressing the challenges of feeding a 
growing population. 
 
Phenotype Data 

In phenotype prediction, genomic data plays a crucial 
role, represented by discrete attributes called markers, 
often single nucleotide polymorphisms (SNPs) (Yang et al., 
2010; Desta & Ortiz 2014). Genomic data exhibits a specific 
structure that influences the application of machine learning 
methods. The complete genotype of an organism consists 
of gene arrangements and sequences, with genotype 
information represented as markers. However, this 
propositional marker representation overlooks important 
biological information (Lynch & Walsh, 1998; Bloom et al., 
2015). 

The availability of fully sequenced genotypes is 
preferred but not always feasible due to technical or cost 
constraints. Phenotype prediction problems can have fully 
sequenced organisms, while others have only partial 
marker information (Desta and Ortiz 2014). The 
environment also plays a role and while controlled 
environments are desirable, they are not always possible in 
many scenarios (Yang et al., 2010; Bloom et al., 2015). The 
measurement of phenotype is often the most expensive 
step, and the number of phenotype attributes may exceed 
the number of examples (Desta & Ortiz, 2014).  

The number of genetic mutations causing a 
phenotype can vary greatly, with some phenotypes being 
influenced by a single gene, while others involve multiple 
genes and environmental effects (Armstead, 2007; Wood 
et al., 2014). Genetic data exhibits linkage disequilibrium, 
where markers close together on an organism's DNA are 
likely to be inherited together (Desta & Ortiz, 2014). In 
summary, genomic data in phenotype prediction presents 
challenges and opportunities due to its specific structure, 
marker representation, availability of sequenced 
genotypes, controlled environments, measurement costs, 
causation of phenotype and linkage disequilibrium. 
Understanding and incorporating these factors are crucial 
in developing effective predictive models for phenotype 
prediction. 
 
Present Statistical and Learning Approaches 

The analysis of genotype, environment, and phenotype 
data in agri-genomics has traditionally relied on classical 
statistical genetics methods, such as univariate and 
bivariate statistical approaches (Lynch and Walsh 1998; 
Westfall et al. 2002; Marchini et al., 2007). These methods 
involve testing each marker or pairs of markers individually 
for association with a phenotype, ignoring complex causal 
relationships and potential interactions between markers. 
Multiple testing issues and limitations associated with p-
values have been addressed through approaches like false 
discovery rate (FDR) and Bayes factors. To overcome the 
dimensionality problem, techniques like grouping markers 
into haplotypes have been explored, although identifying 
meaningful haplotypes remains a challenge (Meng, 2003; 
Lin & Altman, 2004). More recently, there has been a shift 
towards multivariate linear models, such as genomic BLUP, 
penalized regression methods, Bayesian techniques, and 
linear mixed models, which consider all markers 
simultaneously and account for population structure and 
genetic relatedness (Meuwissen et al., 2001; VanRaden, 

2008; Gianola, 2006; Li & Sillanpää, 2012; Guan and 
Stephens 2011). 

In contrast to classical statistical genetics methods, 

machine learning methods have gained attention in agri-

genomics due to their ease of use, multivariate nature, and 

ability to handle attribute selection and capture complex 

interactions (Dudoit et al., 2002; Ziegler, 2007; Szymczak et 

al., 2009; Ogutu et al., 2011, Okser et al., 2014; Cherlin 

2018). These methods, such as lasso, regression trees, 

random forest, gradient boosting machines, and neural 

networks, do not rely on assumptions about the underlying 

genetic mechanisms. Machine learning methods can 

handle the p >> n problem, where the number of attributes 

exceeds the number of samples, although strong underlying 

signals are required for their effectiveness. However, 

attribute selection remains a challenging task, particularly 

when distinguishing between markers associated with a 

trait and those that are causally linked to it. The goal of 

machine learning approaches in agri-genomics is to build 

predictive models and not necessarily mechanistic models, 

although the underlying biology should be considered 

(Schaid, 2018; Jaynes, 2003). (Vasantha & Kiranmai, 2022) 

has utilized machine learning techniques for prediction of 

height but could not make it for whole population. 

Jeong et al. (2020a, b) developed GMStool, a GWAS-

based marker selection tool for genomic prediction from 

genomic data. This tool aimed to improve the efficiency 

and accuracy of marker selection compared to existing 

methods. By fitting a statistical model assuming small and 

similar effect sizes of markers, GMStool successfully 

identified markers with the largest estimated effects for 

genomic prediction. In the study by Liu et al. (2019), a 

deep convolutional neural network (CNN) was utilized for 

phenotype prediction and genome-wide association study 

in soybean. The CNN was trained on a dataset of soybean 

genotypes and phenotypes, enabling accurate phenotype 

prediction and identification of genetic variants associated 

with important traits. Bartholomé et al. (2022) provided an 

overview of the progress and perspectives in genomic 

prediction for rice improvement. This comprehensive 

review highlighted the advancements in genomic 

prediction methods, such as genomic selection, 

association mapping, and machine learning, and their 

potential applications in enhancing rice breeding 

programs. 

 

MATERIALS & METHODS 

 
Proposed Model 

Most conventional machine learning models often 

overlook the population structure information present in the 

genetic data, leading to suboptimal predictions. In this 

study, we propose a two-level prediction system shown in 

(Fig.1) that integrates phylogeny and machine learning to 

accurately predict the height of Oryza Sativa plants based 

on their gene sequence data. 

1. To address this limitation, our approach leverages 

phylogenetic analysis as the first level to classify plants 

into their respective subpopulations with the help of 

phylogenetic tree. 

2. This subpopulation information along with gene 

sequence, is then utilized in the second level to train a 

machine learning model specifically tailored for 

predicting plant height. 

The only input for our model is a genomic sequence, 

whose length does not have to equal 24 (number of SNPs 

considered for our model). 
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Fig. 1: Proposed model flowchart. 
 
Dataset 

Rice (Oryza sativa) is the first crop to have its genome 
sequenced. In the past decade, thousands of rice 
accessions in germplasm banks worldwide have been 
genotyped, and numerous rice variation databases have 
been constructed (Song et al., 2018). The dataset we 
worked with, RiceVarMap, was based on the SR4R 
database. SR4R (Selective Rice Variation Resource) is a 
couch (Yan et al., 2020) comprehensive resource that 
emerged from the rice variation database (RVD), a daughter 
database of the Information Commons for Rice consortium 

(IC4R) (http://ic4r.org/). To ensure the usefulness of the 

rawSNP data, it underwent processing to remove low-
quality SNPs, including those with missing or low-frequency 
genotypes and redundant SNPs identified due to linkage 
disequilibrium (LD).  

The phylogenetic tree exhibited six major clades, 
representing five cultivated rice subpopulations and one 
wild rice subpopulation. The cultivated rice subpopulations 
include indica rice (Ind), Aus rice (Aus), Aromatic (Aro) rice, 
tropical japonica rice (TrJ), and temperate japonica rice 
(TeJ) depicted in Fig. 2. 

We conducted our analysis using the rice dataset 

available at (http://ricevarmap.ncpgr.cn/). This dataset 

comprises genotype and phenotype data for various rice 
accessions. In our study, we focused on the imputed 
dataset, which underwent a process to estimate missing 
genotypes. 

The dataset provided us with information on single 
nucleotide polymorphisms (SNPs) in rice, and we 
specifically worked with the top 24 SNP variation IDs. These 
SNP IDs were selected based on their Pearson correlation 
coefficients, indicating their relevance to the traits under 
investigation shown in Table 1. The selected SNP IDs were 
as follows: vg0112116426, vg0128525986, vg0130976864, 
vg0131664768, vg0133440209, vg0135617816, 
vg0135642980, vg0138418739, vg0138428840, 
vg0138608956, vg0138999212, vg0405463422, 
vg0405463763, vg0603483061, vg0713178880, 
vg0719727299, vg0719727339, vg0719834473, 
vg0819793460, vg0904094998, vg0904282939, 
vg1019044175, vg1123563633, and vg1207667840. 

The dataset was provided in three separate files: 
Cultivar Information, genomic sequences for the SNP 
variation IDs, and phenotype information. To conduct our 
analysis, we combined these files shown in (Table 2) into a 
unified dataset while addressing missing values and 
resolving overlaps. The genomic sequences file contained 
specific codes to represent missing data, such as "DEL" 
indicating a missing deletion mutation and "N" indicating 
missing information. We replaced these codes with the 
primary and secondary alleles for the respective SNP, as 
per the standard representation. After processing the data, 
we obtained a Genome-Wide Association Study (GWAS) 

(https://www.genome.gov/genetics-glossary/Genome-

Wide-Association-Studies) file that contains 

comprehensive information (24 SNPs, height, 
subpopulation) about 529 rice cultivars. This file includes 
details about their gene sequences and corresponding 
height measurements. 

 
 
Fig. 2: Distribution of subpopulations of Oryza Sativa 

derived from phylogeny on genetic sequences of five major 
subpopulations: Aus, Aro - Aromatic, TrJ - Tropical 
Japonica, TeJ - Temporate Japonica, Ind - Indica. 
 
Phylogeny 

Phylogeny is the field of study that focuses on 
reconstructing the evolutionary relationships and genetic 
relatedness among organisms (Jarvis, Holland, & Sumner, 
2017). It provides insights into the common ancestry and 
divergence of species, aiding our understanding of the 
evolutionary history and genetic factors that shape their 
characteristics. In our research, phylogeny plays a crucial 
role in predicting plant height in Oryza Sativa. 

There are several common methods used in 
phylogenetic analysis. One widely used approach involves 
constructing phylogenetic trees, which visually represent 
the evolutionary relationships between organisms (Baum, 
2008). To build these trees, sequence alignment is 
performed. Sequence alignment is the process of arranging 
DNA or protein sequences to identify regions of similarity. 
In our study, we utilized the muscle tool to align the gene 
sequences and calculate the alignment score, 

 which reflects the degree of similarity between 
sequences. The aligned sequences were then used to 
construct a phylogenetic tree. 

http://ic4r.org/
http://ricevarmap.ncpgr.cn/
https://www.genome.gov/genetics-glossary/Genome-Wide-Association-Studies
https://www.genome.gov/genetics-glossary/Genome-Wide-Association-Studies
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Table 1:  showing SNP variation IDs taken into consideration along with their correlation to the trait (Height). LR P and LMM 

P values show their correlation with height. 

Variation ID Chromosome Position LR P-value LMM P-value 

vg0112116426 1 12116426 NA 6.25E-07 
vg0128525986 1 28525986 5.01E-42 NA 
vg0130976864 1 30976864 NA 7.14E-07 
vg0131664768 1 31664768 2.28E-44 NA 

 
Table 2: Final Dataset with Information about Cultivars. Includes Cultivar ID, Subpopulation, Sequence (24 Features) and 

phenotype height. Each SNP is considered a feature for the model. 

Cultivar ID Subpopulation Plant Height (cm) Sequence 

C001 Indica 144.13 GGGAGCCATCGTAATGTTTCCCCC 

C002 VI/Aromatic 177.62 GGGGGCCACCGTAATGCCTCCCCC 
C003 Japonica 141.57 GAGAGCCATAGGAGTGCCAACCTT 

C004 Japonica 140.4 GAGGGCCATAGGAGAACTACTCTC 
C005 Japonica 163.33 AGGGGCCATAGTAAAGCCAACTTC 
C006 Indica 108.23 GGGAGCGGTATTAATGTTACCTTT 

Various methods can be employed to construct 

phylogenetic trees, and we explored different combinations 

of alignment tools and tree construction algorithms. We 

tested tools like Cluster and Muscle, and algorithms like 

UPGMA (Unweighted Pair Group Method with Arithmetic 

Mean) and Maximum   Likelihood (Rocha & Ferreira, 2018).   

After   evaluating   the results, we chose to use the Muscle 

tool coupled with the UPGMA algorithm. This combination 

resulted in a balanced and evenly distributed phylogenetic 

tree, which accurately represented the genetic relationships 

among Oryza Sativa cultivars. 
The constructed phylogenetic tree depicted in (Fig.3) 

served as the basis for forming clusters of cultivars based 
on their similarity scores. To achieve this, a custom script 
was developed. In total, we obtained 317 clusters, each 
representing a distinct subpopulation with cultivars 
exhibiting similar genetic characteristics. This clustering 
approach allows us to group cultivars into subpopulations, 
providing valuable insights into the genetic diversity and 
population structure of Oryza Sativa. 

The main idea behind our approach is to utilize the 
phylogenetic tree and clusters to predict the phenotype of 
unidentified sequences. When we encounter an unidentified 
sequence, we calculate its similarity score against the 
sequences in our database. The sequence belongs to the 
cluster with the highest similarity score. The subpopulation 
assigned to that cluster is determined by the majority of 
subpopulations present in that particular cluster.  
 

 
 
Fig 3:  Phylogenetic tree and clusters formed. 
 
Learning Model 

In order to improve the training of our model due to the 
limited size of our dataset, we employed a synthetic data 
generation technique. By randomly deleting segments of 
the sequence and replacing them with "N" (representing 

missing data), and perturbing the height values by 1-2%, we 
augmented our original dataset of 529 records to a larger 
size of close to 5000 records.  

Before feeding the data into our machine learning 
models, we performed preprocessing steps to encode the 
genetic information. Each position in the DNA sequence can 
take on one of five possible values: A, T, C, G, or N. To 
represent this information, we utilized one-hot encoding, 
resulting in a total of 96 features for the 24 SNPs (single 
nucleotide polymorphisms). If the value at a particular 
position was "N," all four corresponding columns were set 
to zero. Additionally, we applied label encoding to represent 
the subpopulation information based on the five major 
subpopulations: indica, japonica, aromatic, aus and 
intermediate. This resulted in a total of 97 features, 
including the encoded subpopulation, along with the target 
output feature, height. 

To explore the performance of various machine 
learning models on our augmented dataset, we trained 

models such as SVG Regressor (https://scikit-

learn.org/stable/modules/ 

generated/sklearn.svm.SVR.html), XGBoost Regressor 

(https://machinelearningmastery.com/xgboost-for-

regression/), GBLUP (Clark & van der Werf, 2013), LASSO 

and Random Forest. Additionally, we employed an Artificial 
Neural Network (ANN) model to evaluate    its    
effectiveness    in   predicting   plant   height.  

Furthermore, we trained the XGBoost Regressor on 
the top 30 features selected by its feature extraction 
algorithm, aiming to assess the impact of feature selection 
on model performance. 
 
Prediction 

When predicting the height of a plant using our model, 
we follow a two-step process depicted in Fig.4. 

First, given an input DNA sequence, we utilize 
phylogenetic analysis to determine the most closely 
matching cultivar in our database and identify the 
corresponding cluster. This approach allows us to leverage 
the similarity scores obtained through sequence alignment. 
Additionally, if the length of the input sequence is less than 
the number of SNPs (24) our machine learning model is 
trained on, we utilize the aligned sequences and replace 
any missing data ("N") or deletions ("_") with the primary 
and secondary alleles at that particular position. By utilizing 
the phylogenetic tree, we also obtain the subpopulation 
information associated with the given sequence.  

In the second step, we feed both the subpopulation 
information and the normalized DNA sequence into our 
trained machine learning model. The model then processes 
this combined input to predict the height of the plant. 

https://scikit-learn.org/stable/modules/%20generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/%20generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/%20generated/sklearn.svm.SVR.html
https://machinelearningmastery.com/xgboost-for-regression/
https://machinelearningmastery.com/xgboost-for-regression/
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RESULTS and DISCUSSION 
 

High prediction accuracy is a prerequisite for the 
successful application of genomic selection. Prediction 
accuracy is often measured by the correlation between 
observed phenotypes and the predicted GEBVs 

(http://nsip.org/wp-content/uploads/2021/02/Overview-
GEBV-Article.pdf) or predicted phenotypes of cross-

validation (Xu, 2017). To evaluate the performance of our 
model, we employed a 5-fold cross-validation approach. We 
then assessed the model's performance using several 
evaluation metrics. For regression-based evaluation, we 
calculated metrics such as Mean Absolute Error (MAE), 

Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE) and the R2 score (Karunasingha, 2022). These 
metrics provide insights into the accuracy and precision of 
our height predictions. Lower values for MAE, MSE and 
RMSE indicate better performance, while an R2 score 
closer to 1 indicates a higher degree of correlation between 
the predicted and actual heights represented in Table. 3. 

Furthermore, we examined the Pearson correlation 
coefficient to measure the linear relationship between the 
predicted and actual heights. A higher correlation coefficient 
value suggests a stronger linear association between the 
predicted and actual values. 

The results of the experiments are given in the figure 6.

 

 
 
Fig. 4: Prediction process flowchart. 
 

 
 
Fig. 6: Graphs on Evaluation metrics. 

Sequence alignment 
with all sequences in 
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top match assigned. 

If sequence length 
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Output 
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Input 
Sequence 
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Table 3: Comparison of different model evaluations for prediction of height. XBG_30 - XGBoost regressor trained on the 

top 30 features 

 MAE MSE RMSE R2 Score Accuracy Pearson coefficient 

Random Forest 12.13 300.54 17.33 0.70 90.02 0.84 
XGBoost 12.83 311.69 17.65 0.69 89.53 0.83 
XGB_30 12.94 328.77 18.13 0.68 89.42 0.82 
SVR 15.74 432.23 20.78 0.57 87.14 0.76 
Lasso 16.974 470.77 21.69 0.54 86.06 0.73 

Table 4: Comparison of accuracy with existing studies 

Authors Accuracy percentage 

Joen et al., 2020 0.52 
Vasantha & Kiranmai, 2022 0.7 to 0.92 
Grenier et al., 2015 0.54 
Cui et al., 2020 0.50 
Isdro et al., 2015 0.7 
Yan et al., 2020  0.2 to 0.9 
Wang et al., 2017 0.88 
 Proposed work  0.92 

 

COMPARISON WITH EXISTING STUDIES 
 

We compared our proposed work with some of the 
above-mentioned literature. Even though our procedure of 
predicting is hybrid involving biological and machine 
learning strategies, we compared the accuracy of predicting 
a phenotype with other works.  

Here we adopted a hybrid method for predicting 

phenotypic traits that has better accuracy when compared 

with other models stated in the literature and depicted in 

Table 4. Most applications do not use phylogenetic trees 

and instead operate on pairwise sequence distances. In the 

proposed model, homologous allele sequences across 

different species or even within the same genome are 

clustered and classified using Phylogenetic trees. 

Advantages of proposed method over existing studies 

 Biological clustering (based on Genotype) is consistent 
and accurate when compared to other alternative 
approaches. 

 Here we clustered and classified biological sequences, 
applied various Machine Learning Algorithms for the 
second level of classification and predicted phenotypic 
trait height. 

 Most of the existing literature on prediction is based on   
genetic   methods   or   machine   learning   techniques.  
In our work, Random Forest has exhibited better 

predictions when compared with other Machine learning 

techniques. XGBoost has the second highest prediction 

rate after SVM and Lasso Regression. 

 

REFERENCES 
 

Ali, A., Zafar, M. M., Farooq, Z., Ahmed, S. R., Ijaz, A., 
Anwar, Z., ... & Maozhi, R. (2023). Breakthrough in 
CRISPR/Cas system: Current and future directions 
and challenges. Biotechnology Journal, 2200642. 

Armstead, I. (2007). Identification and characterization of a 
key regulatory gene in Lolium perenne. Plant 
Biotechnol Journal, 5(3), 282-293. 

Bartholomé, J., Prakash, P. T. and Cobb, J. N. (2022). 
Genomic Prediction: Progress and  Perspectives for 
Rice Rice Improvement. Genomic Prediction of 
Complex Traits: Methods and Protocols, 569-617. 

Baum, D. (2008). Reading a phylogenetic tree: the meaning 
of monophyletic groups. Nature Education, 1(1), 190. 

Bloom, J. S., Kotenko, I., Sadhu, M. J., Treusch, S., Albert, 
F. W., & Kruglyak, L. (2015). Genetic interactions 
contribute less than additive effects to quantitative trait 
variation in yeast. Nature communications, 6(1), 8712. 

Cherlin, S. (2018). Applying machine learning methods to 
the analysis of genomic data. Comput Struct 
Biotechnol J, 16, 391-399. 

Clark, S. A., & van der Werf, J. (2013). Genomic best linear 
unbiased prediction (gBLUP) for the estimation of 
genomic breeding values. Genome-wide association 
studies and genomic prediction, 321-330. 

Cui, Y., Li, R., Li, G., Zhang, F., Zhu, T., Zhang, Q., ... & Xu, 
S. (2020). Hybrid breeding of rice via genomic 
selection. Plant biotechnology journal, 18(1), 57-67. 

Desta, Z. A. and Ortiz, R. (2014). Genomic selection: 
genome-wide prediction in plant improvement. Trends 
Plant Science, 19(9), 592-601. 

Dudoit, S., Yang, Y. H., Callow, M. J. and Speed, T. P. 
(2002). Statistical methods for identifying differentially 
expressed genes in replicated cDNA microarray 
experiments. Statistica Sinica, 111-139. 

Gianola, D. (2006). A unified view of genomic prediction. 
Genetics, 182(2), 753-755. 

Grenier, C., Cao, T. V., Ospina, Y., Quintero, C., Châtel, M. 
H., Tohme, J., ... & Ahmadi, N. (2015). Accuracy of 
genomic selection in a rice synthetic population 
developed for recurrent selection breeding. PloS 
one, 10(8), e0136594. 

Guan, Y. and Stephens, M. (2011). Bayesian variable 
selection regression for genome-wide association 
studies and other large-scale problems. Ann Appl Stat, 
5(3), 1780-1815. 

Haroon, M., Afzal, R., Zafar, M. M., Zhang, H., & Li, L. 
(2022). Ribonomics approaches to identify RBPome in 
plants and other eukaryotes: current progress and 
future prospects. International Journal of Molecular 
Sciences, 23(11), 5923. 

Haroon, M., Tariq, H., Afzal, R., Anas, M., Nasar, S., Kainat, 
N., ... & Zafar, M. M. (2023). Progress in genome-wide 
identification of RBPs and their role in mitigating 
stresses, and growth in plants. South African Journal 
of Botany, 160, 132-146. 

Haroon, M., Wang, X., Afzal, R., Zafar, M. M., Idrees, F., 
Batool, M., ... & Imran, M. (2022). Novel plant breeding 
techniques shake hands with cereals to increase 
production. Plants, 11(8), 1052. 

Isidro, J., Jannink, J. L., Akdemir, D., Poland, J., Heslot, N., 
& Sorrells, M. E. (2015). Training set optimization 
under population structure in genomic selection. 
Theoretical and applied genetics, 128, 145-158. 

Jannink, J. L., Lorenz, A. J. and Iwata, H. (2010). Genomic 
selection in plant  breeding: from theory to practice. 
Briefings in Functional Genomics, 9(2), 166-177. 

Jarvis, P., Holland, B., & Sumner, J. (2017). Phylogenetic 
invariants and Markov invariants. 

Jaynes, E. T. (2003). Probability Theory: The Logic of 
Science. Cambridge University Press. 

Jeong, S., Kim, J. Y. and Kim, N. (2020a). GMStool: GWAS-
based marker selection tool for genomic prediction 
from genomic data. Scientific Reports, 10(1), 1-12. 

Jeong, S., Kim, J. Y., & Kim, N. (2020b). GMStool: GWAS-
based marker selection tool for genomic prediction 
from genomic data. Scientific reports, 10(1), 19653. 

Karunasingha, D. S. K. (2022). Root mean square error or 
mean   absolute   error?    Use    their    ratio    as    well. 



Int J Agri Biosci, 2023, 12(4): 277-283. 
 

283 

Information Sciences, 585, 609-629. 
Li, M. and Sillanpää, M. J. (2012). Bayesian marker 

selection in high-dimensional generalized linear 
models. J Am Stat Assoc, 107(498), 565-576. 

Lin, S. and Altman, R. B. (2004). Finding haplotype tagging 
SNPs by use of principal components analysis. Am 
Journal Hum Genetic, 75(5), 850-861. 

Liu, Y., Wang, D., He, F., Wang, J., Joshi, T. and Xu, D. 
(2019). Phenotype prediction and genome-wide 
association study using deep convolutional neural 
network of soybean. Frontiers in Genetics, 10, 1091. 

Lynch, M. and Walsh, B. (1998). Genetics and Analysis of 
Quantitative  Traits. Sinauer Associates. 

Marchini, J., Howie, B., Myers, S., McVean, G., & Donnelly, 
P. (2007). A new multipoint method for genome-wide 
association studies by imputation of genotypes. Nature 
genetics, 39(7), 906-913. 

Meng, Z. B. (2003). Haplotype-based linkage disequilibrium 
mapping via  direct haplotype sequencing. Ann Hum 
Genetic, 67(Pt 3), 261-273. 

Meuwissen, T. H., Hayes, B. J. and Goddard, M. (2001). 
Prediction of total genetic value using genome-wide 
dense marker maps. Genetics, 157(4), 1819-1829. 

Ogutu, J. O., Piepho, H. P. and Schulz-Streeck, T. (2011). 
A comparison of random forests, boosting and support 
vector machines for genomic selection. In BMC 
proceedings (Vol. 5, No. 3, pp. 1-5). BioMed Central. 

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S. 
and Aittokallio, T. (2014). Regularized machine 
learning in the genetic prediction of complex traits. 
PLoS Genetics, 10(11), e1004754. 

Razzaq, A., Zafar, M. M., Ali, A., Hafeez, A., Sharif, F., 
Guan, X., ... & Yuan, Y. (2022). The pivotal role of 
major chromosomes of sub-genomes A and D in fiber 
quality traits of cotton. Frontiers in Genetics, 12, 
642595. 

Rocha, M., & Ferreira, P. G. (2018). Bioinformatics 
algorithms: design and Implementation in Python. 
Academic Press. 

Schizophrenia Working Group of the Psychiatric Genomics 
Consortium (2014). Biological insights from 108 
schizophrenia-associated genetic loci. Nature, 
511(7510), 421-427. 

Schaid, D. J. (2018). Machine learning to integrate human 
epigenomic annotations in GWAS. Nat Genet, 50(2), 
220-231. 

Song, S., Tian, D., Zhang, Z., Hu, S. and Yu, J. (2018). Rice 
genomics: over the past two decades and into the 
future. Genomics, Proteomics & Bioinformatics, 16(6), 
397-404. 

Szymczak, S., Biernacka, J. M., Cordell, H. J., González‐
Recio, O., König, I. R., Zhang, H. and Sun, Y. V. 
(2009). Machine learning in genome‐wide association 

studies. Genetic Epidemiology, 33(S1), S51-S57. 
VanRaden, P. M. (2008). Efficient methods to compute 

genomic predictions. J Dairy Sci, 91(11), 4414-4423. 
Vasantha, S. V. and Kiranmai, B. (2022). Machine Learning-

Based Breeding Values Prediction System (ML-
BVPS). In Proceedings of Data Analytics and 
Management: ICDAM 2021, Volume 1 (pp. 259-266). 
Springer Singapore. 

Vignal, A., Milan, D., SanCristobal, M. and Eggen, A. 
(2002). A review on  SNP and other types of 
molecular markers and their use in animal genetics. 
Genetics Selection Evolution, 34(3), 275-305. 

Wang, X., Li, L., Yang, Z., Zheng, X,, Yu, S., Xu, C. and Hu, 
Z. () Predicting rice hybrid  performance  using 
univariate and multivariate GBLUP models based on 
North Carolina mating design II. aHeredity. 2017 
Mar;118(3):302-10. 

Wang, X., Li, L., Yang, Z., Zheng, X., Yu, S., Xu, C., & Hu, 
Z. (2017). Predicting rice hybrid performance using 
univariate and multivariate GBLUP models based on 
North Carolina mating design II. Heredity, 118(3), 302-
310. 

Westfall, P. H., Zaykin, D. V. and Young, S. S. (2002). 
Multiple tests for genetic effects in association studies. 
Biostatistical Methods, 143-168. 

Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., 
Gustafsson, S. and Kratzer, W. (2014). Defining the 
role of common variation in the genomic and biological 
architecture of adult human height. Nature Genetics, 
46(11), 1173-1186. 

Xu, S. (2017). Predicted residual error sum of squares of 
mixed models: an application for genomic prediction. 
G3: Genes, Genomes, Genetics, 7(3), 895-909. 

Yan, J., Zou, D., Li, C., Zhang, Z., Song, S. and Wang, X. 
(2020). SR4R: An integrative SNP resource for 
genomic breeding and population research in rice. 
Genomics, Proteomics Bioinformatics, 18(2), 173-185. 

Yan, J., Zou, D., Li, C., Zhang, Z., Song, S., & Wang, X. 
(2020). SR4R: an integrative SNP resource for 
genomic breeding and population research in 
rice. Genomics, Proteomics & Bioinformatics, 18(2), 
173-185. 

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., 
Henders, A. K., Nyholt, D. R. and Visscher, P. M. 
(2010). Common SNPs explain a large  proportion of 
the heritability for human height. Nature Genetics, 
42(7), 565-569. 

Zafar, M. M., Jia, X., Shakeel, A., Sarfraz, Z., Manan, A., 
Imran, A., ... & Ren, M. (2022a). Unraveling heat 
tolerance in upland cotton (Gossypium hirsutum L.) 
using univariate and multivariate analysis. Frontiers in 
plant science, 12, 727835. 

Zafar, M. M., Manan, A., Razzaq, A., Zulfqar, M., Saeed, A., 
Kashif, M., ... & Ren, M. (2021). Exploiting agronomic 
and biochemical traits to develop heat resilient cotton 
cultivars under climate change scenarios. Agronomy, 
11(9), 1885. 

Zafar, M. M., Rehman, A., Razzaq, A., Parvaiz, A., Mustafa, 
G., Sharif, F., ... & Ren, M. (2022b). Genome-wide 
characterization and expression analysis of Erf gene 
family in cotton. BMC plant biology, 22(1), 134. 

Zafar, M. M., Shakeel, A., Haroon, M., Manan, A., Sahar, 
A., Shoukat, A., ... & Ren, M. (2022c). Effects of salinity 
stress on some growth, physiological, and biochemical 
parameters in cotton (Gossypium hirsutum L.) 
germplasm. Journal of Natural Fibers, 19(14), 8854-
8886. 

Ziegler, A. (2007). Methods for meta-analysis of genetic 
data. Eur J Hum Genetic, 15(7), 740-746.

 


